메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제35권 제2호
발행연도
2020.1
수록면
371 - 399 (29page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $P_s:= \mathbb{F}_2[x_1,x_2,\ldots ,x_s] = \bigoplus_{n\geqslant 0}(P_s)_n$ be the polynomial algebra viewed as a graded left module over the mod 2 Steenrod algebra, $\mathscr A$. The grading is by the degree of the homogeneous terms $(P_s)_n$ of degree $n$ in the variables $x_1, x_2, \ldots, x_s$ of grading $1$. We are interested in the {\it hit problem}, set up by F. P. Peterson, of finding a minimal system of generators for $\mathscr A$-module $P_s$. Equivalently, we want to find a basis for the $\mathbb F_2$-graded vector space $\mathbb F_2\otimes_{\mathscr A} P_s$. In this paper, we study the hit problem in the case $s=5$ and the degree $n = 5(2^t-1) + 6\cdot 2^t$ with $t$ an arbitrary positive integer.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0