메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안현성 (충북대학교) 김승구 (충북대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제7호
발행연도
2020.7
수록면
935 - 941 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
사람 수 추정 기술은 IoT 서비스를 제공하기 위해 중요하다. 대부분의 사람 수 추정 기술은 카메라 또는 센서 데이터를 활용한다. 하지만 기존 기술들은 사생활 침해 문제가 발생 가능하며 추가로 인프라를 구축해야한다는 단점이 있다. 본 논문은 Wi-Fi AP를 활용하여 사람 수를 추정하는 방법을 제안한다. 사람 수 추정을 위해서 Wi-Fi의 채널 상태 정보를 딥러닝 기술을 활용하여 분석한다. Wi-Fi AP 기반 사람 수 추정 기술은 사생활 침해 우려가 없으며, 기존 Wi-Fi AP 인프라를 활용하면 되기 때문에 추가 비용이 발생하지 않는다. 제안하는 알고리즘은 k-바인딩 데이터 전처리 과정과 1D-CNN 학습 모델을 사용한다. AP 2대를 설치하여 6명의 사람 수 추정 결과를 실험을 통해 분석하였다. 정확한 사람 수 판별에 관한 결과는 64.8%로 낮은 결과를 보였지만, 사람의 수를 클래스로 분류한 결과는 84.5%의 높은 결과를 보였다. 해당 알고리즘은 제한된 공간에 사람의 밀집도를 파악하는데 응용 가능할 것으로 기대된다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구 및 배경지식
Ⅲ. 문제 정의 및 기법 제안
Ⅳ. 성능 평가
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001107026