메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이순빈 (성균관대학교) 정종범 (성균관대학교) 류일웅 (가천대학교) 김성빈 (성균관대학교) 김인애 (성균관대학교) 류은석 (성균관대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
1 - 5 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 MPEG-I 그룹에서는 표준화가 진행중인 몰입형 미디어(Immersive Media)에 대한 압축 성능 탐색이 이루어지고 있다. 몰입형 비디오는 다수의 시점 영상과 깊이 맵을 통한 깊이 맵 기반 이미지 렌더링(DIBR)을 바탕으로 제한적 6DoF 을 제공하고자 하는 기술이다. 현재 MIV(Model for Immersive Video) 기술에서는 바탕 시점(Basic View)과 각 시점의 고유한 영상 정보를 패치 단위로 모아둔 추가 시점(Additional View)으로 처리하는 모델을 채택하고 있다. 그 중에서 추가 시점은 일반적인 영상과는 달리 시간적/공간적 상관성이 떨어지는 분절적인 형태로 이루어져 있어 비디오 인코더에 대해 최적화가 되어 있지 않으며, 처리 방법의 특성에 따라 자기 유사적인 형태를 지니게 된다. 따라서 MIV 에서 스크린 콘텐츠 코딩 성능과 함께 화면 내 블록 카피(IBC: intra block copy) 기술에 대한 성능을 분석 결과를 제시한다. IBC 미적용 대비 최대 7.56%의 Y-PSNR BD-rate 감소가 가능함을 확인하였으며, 영상의 특성에 따라 IBC 의 선택 비율을 확인하여 추가 시점의 효율적인 압축 형태를 고찰한다.

목차

요약
1. 서론
2. MIV(Model for Immersive Video)
3. 성능 분석
4. 결론 및 향후 연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001082873