메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
천우진 (고려대학교) 강필성 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제46권 제4호
발행연도
2020.8
수록면
393 - 403 (11page)
DOI
10.7232/JKIIE.2020.46.4.393

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Numerous companies are now able to store and manage huge amounts of information about their customers. Accordingly, studies on recommender systems are actively being conducted to use the information more efficiently. Among them, studies that wish to have high predictability using additional information other than purchase information are presented in this paper with a simple method to reduce costs and increase accuracy. The corresponding module is a vector based on the probability that an item is transferred to another item. Experiments conducted on public datasets show that the performances of the proposed architecture have improved by an average of 9.7% compared to the benchmark models. It was also intended to provide direction for cold-start problem resolution at no additional cost.

목차

1. 서론
2. 관련 연구
3. 방법론
4. 실험
5. 결론
참고문헌

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-530-001096347