메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Bunyodbek Ibrokhimov (Inha University) Cheonghwan Hur (Inha University) Hyunseok Kim (Inha University) Sanggil Kang (Inha University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.4
발행연도
2020.8
수록면
266 - 273 (8page)
DOI
10.5573/IEIESPC.2020.9.4.266

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Breast cancer is the second most common cause of mortality in women. In the last decade, the rate of new diagnoses has increased significantly. Meanwhile, according to the World Health Organization, breast cancer can be treated effectively if it is detected in the early stages. Computer automated diagnosis systems have greatly helped researchers to learn the evolution and causes of breast cancer, as well as to monitor and detect the disease among women. However, there is a need for modern and accurate models to reduce the risk of breast cancer as well as for further improvements in diagnostic performance. In this paper, a deep belief network (DBN) model is proposed to achieve high accuracy in breast cancer classification. A particle swarm optimization algorithm is employed and integrated into the DBN to optimize the model’s parameters. The model is tested on two popular breast cancer datasets. Moreover, analysis of the datasets and improvements in data quality using data mining are shown, and an effective feature-selection method for a high-dimensional feature space is discussed. In experiments, the proposed method showed robust performance with high classification accuracy, matching, and even outperforming existing state-of-the-art algorithms.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed Model
4. Experiments
5. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-001078711