메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
이창용 (경북대학교 건설공학부) 김률희 (경북대학교 건설공학부) 임태경 (경북대학교 건설공학부) 김화중 (경북대학교 건설공학부) 이동은 (경북대학교 건설공학부)
저널정보
한국건축시공학회 한국건축시공학회 학술발표대회 논문집 한국건축시공학회 2007년도 추계 학술논문 발표대회
발행연도
2007.1
수록면
109 - 113 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper introduces a system, Simulation based Stochastic Markup Estimation System (S2ME), for estimating optimum markup for a project. The system was designed and implemented to better represent the real world system involved in construction bidding. The findings obtained from the analysis of existing assumptions used in the previous quantitative markup estimation methods were incorporated to improve the accuracy and predictability of the S2ME. The existing methods has four categories of assumption as follows; (1) The number of competitors and who is the competitors are known, (2) A typical competitor, who is fictitious, is assumed for easy computation, (3) the ratio of bid price against cost estimate (B/C) is assumed to follow normal distribution, (4) The deterministic output obtained from the probabilistic equation of existing models is assumed to be acceptable. However, these assumptions compromise the accuracy of prediction. In practice, the bidding patterns of the bidders are randomized in competitive bidding. To complement the lack of accuracy contributed by these assumptions, bidding project was randomly selected from the pool of bidding database in the simulation experiment. The probability to win the bid in the competitive bidding was computed using the profile of the competitors appeared in the selected bidding project record. The expected profit and probability to win the bid was calculated by selecting a bidding record randomly in an iteration of the simulation experiment under the assumption that the bidding pattern retained in historical bidding DB manifest revival. The existing computation, which is handled by means of deterministic procedure, were converted into stochastic model using simulation modeling and analysis technique as follows; (1) estimating the probability distribution functions of competitors' B/C which were obtained from historical bidding DB, (2) analyzing the sensitivity against the increment of markup using normal distribution and actual probability distribution estimated by distribution fitting, (3) estimating the maximum expected profit and optimum markup range. In the case study, the best fitted probability distribution function was estimated using the historical bidding DB retaining the competitors' bidding behavior so that the reliability was improved by estimating the output obtained from simulation experiment.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0