메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Yoo, Yoon-Sik (Senor Networking Research Team, ETRI) Huh, Jae-Doo (Senor Networking Research Team, ETRI)
저널정보
한국정보기술응용학회 한국정보기술응용학회 학술대회 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
발행연도
2005.1
수록면
243 - 246 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recent ubiquitous computing environments increasingly impact on our lives using the current technologies of sensor network and ubiquitous services. In this paper, we propose ubiquitous architectural framework for ubiquitous sleep aid service(UbiSAS) in the subset of ubiquitous computing for refreshing of human's sleep. And we examine technical feasibility. Human can recover his health through refreshing sleep from fatigue. Ubiquitous architectural framework for UbiSAS in digital home offers agreeable sleeping environment and improves recovery from fatigue. So we present new concept of ubiquitous architectural framework dissolving stress. Specially, we apply context to context-aware framework module. This context is transferred to context adaptive inference engine which has service invocation function in intelligent agent module. Ubiquitous architectural framework for UbiSAS using context adaptive rule inference engine without user intervention is technical issue. That is to say, we should take sleep comfortably during our sleeping. And sensed information during sleeping is changed to context-aware information. This presents significant information in context adaptive rule inference engine for UbiSAS. This information includes all sleeping state during sleeping in context-aware computing technique. So we propose more effective and most suitable ubiquitous architectural framework using context adaptive rule inference engine for refreshing sleep in this paper.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0