메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
이한구 (한국수자원공사 물관리센터) 김선기 (한국수자원공사 물관리센터) 조영현 (한국수자원공사 물관리센터) 정구열 (한국수자원공사 물관리센터)
저널정보
한국수자원학회 한국수자원학회 학술발표회 한국수자원학회 2008년도 학술발표회 논문집
발행연도
2008.1
수록면
184 - 188 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0