메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
신동엽 (호서대학교 대학원 전자공학과) 민경중 (호서대학교 대학원 전자공학과) 강찬구 (호서대학교 대학원 전자공학과) 임운천 (호서대학교 대학원 전자공학과)
저널정보
한국음향학회 한국음향학회 학술발표대회 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
발행연도
2000.1
수록면
87 - 90 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
문-음성 합성기의 자연감을 높이기 위해 주로 자연음에 존재하는 운률 법칙을 정확히 구현해 주어야 한다. 일반적으로 언어학적 정보를 이용하거나 자연음으로부터 추출한 운률 정보를 추출한 운률 법칙을 합성에 이용하고 있다. 이와 같이 구한 운률 법칙이 자연음에 존재하는 모든 운률 법칙을 포함할 수 있으면, 자연스러운 합성음을 들을 수 있겠으나, 실질적으로는 모든 법칙을 구현한다는 것은 어려운 실정이고, 자연음으로부터 추출한 운률 법칙이 잘못 구현되는 경우 합성음의 자연성이 떨어지는 것을 피할 수 없을 것이다. 이런 점을 고려하여 우리는 자연음에 내재하는 운율 법칙을 훈련을 통해 학습할 수 있는 인공 신경망을 제안하였다 운률의 세 가지 요소는 피치, 지속시간, 크기 변화가 있는데, 인공 신경망은 문장이 입력되면, 각 해당 음소의 지속시간에 따른 피치 변화와 크기 변화를 학습할 수 있도록 설계하였다. 신경망을 훈련시키기 위해 고립 단어군과 음소균형 문장군을 화자로 하여금 발성하게 하여, 녹음하고, 분석하여 운률 데이터베이스를 구축하였다. 자연음의 각 음소에 대해 지속시간과 피치변화 그리고 크기 변화를 구하여 곡선 적응 방법을 이용하여 각 변화 곡선에 대한 계수를 구해 데이터베이스를 구축한다. 이렇게 구축한 데이터베이스를 이용해 인공 신경망을 훈련시켜 평가한 결과 훈련용 데이터를 계속 확장하면 좀 더 자연스러운 운률을 발생시킬 수 있음을 관찰하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0