메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
차민석 (한국과학기술원 테크노경영대학원) 배종태 (한국과학기술원 테크노경영대학원)
저널정보
기술경영경제학회 기술경영경제학회 학술발표회 기술경영경제학회 1999년도 제15회 하계 학술발표회 논문집
발행연도
1999.1
수록면
98 - 118 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study deals with the knowledge acquisition activities along the growth stages of Korean ventures. This issue is very important in the three reasons. First, the target of the study-new ventures- is a pending issue and can be regarded as the engine of innovation in the Korean economy. Second, venture activities is so dynamic compared to those of the established companies and the study reflects its dynamic features. Third, the knowledge is becoming more important one among various resources, and knowledge management can be a timely issue. The main research questions are as follows : - How does the degree of knowledge domain, vary along the growth stages\ulcorner - Which knowledge domains are more influential on the performance along growth stages\ulcorner Major findings of the study are as follow: First, technological knowledge acquisition effort are most intensive at the start-up stage, while the management knowledge efforts are active at the growth stage. The degree of market knowledge acquisition efforts is almost the same along the stages. Second, the important knowledge domain, which influences on the performance, varies along the stages. The acquisition effort for product technology knowledge is more influential on the sales growth rate and has a negative effect on the return on assets at the start-up stage, while the management knowledge about administration is more influential on the return on assets at the growth stage. Finally the academic contributions and managerial implications of the study are presented and the future research directions are also suggested.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0