임목(林木)의 주체성인(主體成因)인 수간(樹幹)에 대한 각종(各種) 성장인자간(成長因子間)의 정준상관(正準相關)과 그의 관계적(關係的) 배경(背景) 및 수간(樹幹)의 총합적(總合的)인 변동분석(變動分析)에 의(依)한 수간적(樹幹的) 특징(特徵)을 파악(把握)함에 있어, 그의 최적기법(最適技法)을 탐색(探索)하기 위한 시도(試圖)로서 일본(日本)잎갈나무(Larix leptolepis)에 주성분(主成分) 및 정준상관분석법(正準相關分析法)을 도입적용(導入適用)하고, 얻어진 결과(結果)를 다음과 같이 요약(要約)한다. 1) 정형수(正形數)($x_8$)를 제외(除外)한 모든 성장인자(成長因子) 즉(卽), 수고(樹高)($x_1$), 지하고(枝下高)($x_2$), 망고(望高)($x_3$), 흉고직경(胸高直徑)($x_4$), 중앙직경(中央直徑)($x_5$), 수관폭(樹冠幅)($x_6$) 및 간재적(幹材積)($x_7$) 등(等)의 각(各) 인자간(因子間)에 강약간(?弱間)의 상관(相關)이 있으며, 특(特)히 흉고직경(胸高直徑), 수고(樹高) 및 중앙직경(中央直徑) 등(等)은 간재적(幹材積)과 고도(高度)의 상관(相關)이 있다(표(表) l 참조(參照)). 2) (1) 상장성장인자(上長成長因子)인 수고(樹高), 지하고(枝下高) 및 망고(望高) 등(等)의 합성변량(合成變量)과 간재적간(幹材積間), (2) 비대성장인자(肥大成長因子)인 흉고직경(胸高直徑), 중앙직경(中央直徑) 및 수관폭(樹冠幅) 등(等)의 합성변량(合成變量)과 간재적간(幹材積間), (3) 상장(上長) 및 비대성장인자(肥大成長因子)를 총망라(總網羅)한 6개인자(個因子)의 합성변량(合成變量)과 간재적간(幹材積間)의 정준상관계수(正準相關係數)와 정준변량(正準變量)이 각각(各各) $${(1)\;{\gamma}_{u1,v1}=0.82980^{**},\;\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3}\\{(2)\;{\gamma}_{u1,v1}=0.98198^{**},\;\{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6}\\{(3)\;{\gamma}_{u1,v1}=0.98700^{**},\;\{u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6}$$ 등(等)과 같이 되어, 어느 경우(境遇)에서도 고도(高度)의 정준상관(正準相關)을 가지며, (1)의 경우(境遇)에는 수고(樹高)가, (2)의 경우(境遇)에는 흉고직경(胸高直徑)이, (3)의 경우(境遇)에는 흉고직경(胸高直徑)과 수고(樹高)가 각각(各各)의 정준상관(正準相關)에 절대적인 기여(寄與)를 하는 것으로서, 각종(各種) 질적성장(質的成長)의 총합특성(總合特性)은 이들 인자(因子)의 막강한 영향력(影響力)에 의해서 형성(形成)되며, 특(特)히 (3)의 경우에서 간재적(幹材積)과의 정준상관(正準相關)에 미치는 흉고직경(胸高直徑)의 영향력(影響力)은 기타(其他)의 인자(因子)에 비(比)하여 판이(判異)하게 큰 것으로 밝혀지고 있다(표(表) 2 참조(參照)). 3) 상장성장인자(上長成長因子)인 수고(樹高), 지하고(枝下高) 및 망고(望高) 등(等)의 합성변량(合成變量)과 비대성장인자(肥大成長因子)인 흉고직경(胸高直徑), 중앙직경(中央直徑) 및 수관폭(樹冠幅) 등(等)의 합성변량간(合成變量間)의 정준상관계수(正準相關係數)와 정준변량(正準變量)이 $${\gamma}_{u1,v1}=0.78556^{**},\;\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076z_5+0.05285z_6$$와 같이 됨에 따라, 각종 상장성장인자(上長成長因子)와 비대성장인자간(肥大成長因子間)의 고도(高度)의 정준상관(正準相關)에 있어 수고(樹高)와 흉고직경(胸高直徑)만의 기여도(寄與度)가 극(極)히 현저한 것으로서, 상장성장(上長成長)의 총합특성(總
To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the prin