메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임현 (목포대학교 전자공학과) 박순영 (목포대학교 전자공학과) 방만원 (목포대학교 전자공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제14권 제5호
발행연도
1995.1
수록면
5 - 10 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 단어를 발음하는 방법 이 각각 다른 화자들의 변이성을 잘 흡수하도록 복수개의 통계적인 모델들을 구성하기 위하여 HMM을 기본으로 하는 집단화 방법을 제시한다. 또한 개발된 방법으로부터 얻어진 HMM집단화된 모델들이 불특정화자 고립단어 인식에 응용된다. HMM 집단화 방법은 학습용 데이타로부터 어떤 경계치 보다 낮은 유사도를 갖는 관측열들을 분리하여 새로운 집단을 만들고 이 집단내에 있는 관측열들을 이용하여 새로운 모델들을 학습시키는 방법이다. 집단화 과정은 반복되는데 최고의 유사도를 갖는 모델의 집단에 관측열들을 재분배하고 집단내 관측열들이 변화하면 새로운 모델을 재 추정하여 기존의 모델을 대신한다. 그러므로 이 집단화 방법은 집단화 과정과 파라미터 추정이 일체화되어 기존의 패턴에 의한 집단화 방법보다 더욱 효율적이 된다. 실험결과 HMM에 의한 집단화 방법이 기존의 패턴에 의한 집단화 방법보다. 고립 숫자음 인식에 있어서 $1.43\%$의 인식률을 향상시킬 수 있었으며 단일 모델의 사용보다는 $2.08\%$의 인식률이 향상되었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0