메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최준식 (조선대학교 약학대학) 장일효 (조선대학교 약학대학) 범진필 (조선대학교 간호전문대학)
저널정보
대한약학회 약학회지 약학회지 제41권 제2호
발행연도
1997.1
수록면
195 - 202 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study was to determine pharmacokinetic parameters of vancomycin using two point calculation(TPC) and Bayesian methods in 16 Korean normal volunteers and 15 g astric cancer patients. Nonparametric expected maximum(NPEM) algorithm for calculation of population pharmacokinetic parameter was used, and these parameters were applied for clinical pharmacokinetic parameters by Bayesian analysis. Vancomycin was administered 1.0g every 12 hrs for 3 days by IV infusion over 60 minutes. The volume of distribution(Vd), elimination rate constant(Kel) and total body clearance(CLt) of vancomycin in normal volunteers using TPC method were $0.34{\pm}0.06 L/kg,\; 0.19{\pm}0.01 hr^{-1}$ and $4.08 {\pm} 0.93 L/hr$, respectively, The Vd, Kel and CLt of vancomycin in gastric cancer patients using TPC method were $0.46 {\pm} 0.06 L/kg, 0.17{\pm}0.02 hr^{-1}$ and $4.84 {\pm} 0.57 L/hr$ respectively. There were significant differences(p<0.05) in Vd. Kel and CLt between normal volunteers and gastric cancer patients. Polpulation pharmacokinetic parameter, the slope(KS) of the relationship beetween Kel versus creatinine Clearance, and the Vd were $0.00157{\pm}0.00029(hr{\cdot}mL/min/1.73m^2)^{-1},\; 0.631 {\pm} 0.0036 L/kg$ in gastric cancer patients using NPEM algorithm respectively. The Vd and Kel were $0.63{\pm}0.005 L/kg, 0.15 {\pm}0.027 hr^{-1}$ for gastric cancer patients using Bayesian method. There were significant differences(p<0.05) in vancomycin pharmacokinetics between Bayesian and TPC methods. It is considered that the population parameter in the patient population is necessary for effective Bayesian method in clinical pharmacy practise.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0