메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
손중수 (고등기술연구원 설계기술연구실/아주대 시스템공학과) 이경돈 (고등기술연구원 설계기술연구실/아주대 시스템공학과) 박상봉 (고등기술연구원 생산기술연구실)
저널정보
한국레이저가공학회 한국레이저가공학회지 한국레이저가공학회지 제2권 제3호
발행연도
1999.1
수록면
19 - 31 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper introduces the monitoring scheme of laser welding quality using neural network. The developed monitoring scheme detects light signal emitting from plasma formed above the weld pool with optic sensor and DSP-based signal processor, and analyzes to give a guidance about the weld quality. It can automatically detect defects of laser weld and further give an information about what kind of defects it is, specially partial penetration and porosity among the interior defects. Those could be detected only by naked eyes or X-ray after welding, which needs more processes and costs in mass production. The monitoring scheme extracts four feature vectors from signal processing results of optical measuring data. In order to classify pattern for extracted feature vectors and to decide defects, it uses single-layer neural network with perceptron learning. The monitoring result using only the first feature vector shows confidence rate in recognition of 90%($\pm$5) and decides whether normal status or defects status in real time.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0