메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장유순 (기상청 기상연구소 해양기상지진연구실) 이다운 (기상청 기상연구소 해양기상지진연구실) 서장원 (기상청 기상연구소 해양기상지진연구실) 윤용훈 (기상청 기상연구소 해양기상지진연구실)
저널정보
한국지구과학회 한국지구과학회지 한국지구과학회지 제26권 제3호
발행연도
2005.1
수록면
268 - 275 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
대표적인 엘니뇨 지수인 태평양 Nino 해역의 표층 수온을 예측하기 위해 비선형 통계모델 중의 하나인 신경망 기법을 적용하였다. 신경망 모델 학습 과정의 입력 자료로 1951년부터 1993년까지의 태평양 해역$(120^{\circ}\;E,\;20^{\circ}\;S-20^{\circ}\;N)$ NCEP/NCAR의 재분석 표층 수온 편차의 경험적 직교함수 7개 주모드를 사용하였고, 그 중 1994년부터 2003년까지의 10년 결과를 분석하였다. 모든 해역에서의 9개월까지의 신경망 모델의 예측력은 비교적 우수하였으며, 특히 1997년과 1998년의 강한 엘니뇨의 발달 및 소멸도 잘 예측함을 확인할 수 있었다. 해역별로는 Nino3 지역의 예측성능이 가장 높았으며, 9개월 이후부터는 그 예측력이 급격히 감소하였다. 한편 지역적인 영향이 커 예측력이 낮은 동태평양 연안의 Nino1+2 지역은 9개월 이후에도 예측력의 감소가 관찰되지 않았다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0