메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zayed, E.M.E. (Department of Mathematics, Faculty of Science, Zagazig University, Egypt)
저널정보
한국전산응용수학회 Journal of applied mathematics & computing Journal of applied mathematics & computing 제12권 제1호
발행연도
2003.1
수록면
81 - 105 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper deals with the very interesting problem about the influence of piecewise smooth boundary conditions on the distribution of the eigenvalues of the negative Laplacian in R$^3$. The asymptotic expansion of the trace of the wave operator (equation omitted) for small |t| and i=√-1, where (equation omitted) are the eigenvalues of the negative Laplacian (equation omitted) in the (x$^1$, x$^2$, x$^3$)-space, is studied for an annular vibrating membrane $\Omega$ in R$^3$together with its smooth inner boundary surface S$_1$and its smooth outer boundary surface S$_2$. In the present paper, a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components (equation omitted)(i = 1,...,m) of S$_1$and on the piecewise smooth components (equation omitted)(i = m +1,...,n) of S$_2$such that S$_1$= (equation omitted) and S$_2$= (equation omitted) are considered. The basic problem is to extract information on the geometry of the annular vibrating membrane $\Omega$ from complete knowledge of its eigenvalues by analysing the asymptotic expansions of the spectral function (equation omitted) for small |t|.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0