메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이원부 (동국대학교 경상대학 정보관리학과)
저널정보
한국경영정보학회 경영정보학연구 경영정보학연구 제1권 제1호
발행연도
1991.1
수록면
87 - 101 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The primary purpose of this study was to investigate a robust search methodology that could be used in full-text information retrieval systems. A robust search methodology is one that can be easily used by a variety of users (particularly naive users) and it will give them comparable search performance regardless of their different expertise or interests In order to develop a possibly robust search methodology, a fully functional prototype of a fuzzy knowledge based information retrieval system was developed. Also, an experiment that used this prototype information retreival system was designed to investigate the performance of that search methodology over a small exploratory sample of user queries To probe the relatonships between the possibly robust search performance and the query organization using fuzzy inference logic, the search performance of a shallow query structure was analyzes. Consequently the following several noteworthy findings were obtained: 1) the hierachical(tree type) query structure might be a better query organization than the linear type query structure 2) comparing with the complex tree query structure, the simple tree query structure that has at most three levels of query might provide better search performance 3) the fuzzy search methodology that employs a proper levels of cut-off value might provide more efficient search performance than the boolean search methodology. Even though findings could not be statistically verified because the experiments were done using a single replication, it is worth noting however, that the research findings provided valuable information for developing a possibly robust search methodology in full-text information retrieval.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0