메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lim, Young-Cheol (Department of Physiology, Seoul National University College of Medicine) Lee, Sang-Jin (Chungbuk University) Sung, Ho-Kyung (Department of Physiology, Seoul National University College of Medicine)
저널정보
대한생리학회 대한생리학회지 대한생리학회지 제28권 제1호
발행연도
1994.1
수록면
79 - 90 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of the present study is to assess the contribution of bulk flow to the regulatory mechanism of amniotic fluid volume and its ionic concentration in the membranes surrounding the amniotic fluid. For quantitative assessment, we prepared 4 kinds of artificial amniotic fIuids (isotonic isovolumetric, hypotonic isovolumetric, isotonic hypervolumetric and hypotonic hypervolumetric ones) by replacing 70% of amniotic fluid of pregnant rabbits with water or normal Tyrode solutions. Isoosmotic saline of 0.5 ml volume containing 0.05% Censored and 15 mM/l LiCl was administered initially into amniotic sacs of all subject animals. Samples of amniotic fluid were collected in after 30 and 90 minute intervals; the concentrations of Censored, $Na^+\;and\;Li^+$ were determined and compared. Followings are the results obtained. 1. from isovolumetric and increased Congcord group, we couldn't find significant change in $Li^+\;and\;Na^+$ concentration in isotonic amniotic fluid. However, $Na^+$ concentration increased significantly as well as a striking increase in Censored concentration in hypotonic amniotic fluid. 2. In isovoIumetric and decreased Censored group, the rate of $[Li^+]$ decrement and the rate of $[Na^+]$ increment were much higher in hypotonic amniotic fluid than in isotonic. 3. In hypervolumetric and increased Censored group, the rate of $Na^+$ efflux increased proportionately with the increment of Censored concentration up to 0.98, which was higher than the rate of $Li^+$ efflux in isotonic amniotic fluid. However, the increment of $Na^+$ concentration was rather related with the initial $Na^+$ concentration in hypotonic amniotic fluid, showing inverse relationship. $Li^+$ concentration increased only when there was a marked increase in Censored concentration and approached near a maximum value or 1. 4. For hypervolumetric and decreased Censored group, the observations were identical to isovolumetric and decreased Censored group. From these results the following conclusions could be made: 1) There is no net movement of water or monovalent cations across the membranes surrounding amniotic fIuid in isotonic isovolumetric condition. In contrast, there is a net efflux of amniotic fluid by osmotic bulk flow, resulting in elevation of $Na^+$ concentration in hypotonic isovolumetric condition. 2) In hypervolumetric conditions, there is a massive efflux of amniotic fluid or solvent drag through the surrounding membranes by fiItrative bulk flow, where the rate of $Na^+$ efflux has a linear relationship with that of water efflux. This is assumed to be carried out through enlarged and newly opened intercellular spaces resulting from increased intraamniotic pressure. 3) Once increasing intraamniotic pressure reaches a point allowing $Li^+$ to pass through during osmotic bulk flow in hypotonic amniotic fIuid, $Na^+$ influx seems to occur by diffusion simultaneously or immediately thereafter, too.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0