메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
안태옥 (전북 산업 대학교 컴퓨터공학과) 변용규 (서울 산업 대학교 전자계산학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제13권 제2호
발행연도
1994.1
수록면
41 - 50 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 단어 패턴 중 유사한 특성의 정보에 기초를 둔 DMS(Dynamic Multi-Section) 모델을 제안한다. 이 모델은 각각의 단어를 몇 개의 구간(Section)의 시계열로 분할하고, 각각의 구간 모두에 지속 시간 정보와 구간을 대표하는 특징 벡터를 구간의 정보로 등록해 둔 것이다. 단어 패턴에서 모델을 작성하는 절차는 대표 특징 벡터와 지속 시간의 정보를 거리에 따라 반영하면서 단어 패턴과 모델과의 매칭을 반복하여 매칭에 의한 누적 거리가 최소로 되도록 하는 것이다. 제안된 음성 인식 실험을 수행하는 것 이외에도 비교를 위해 DP 방법, HMM 방법 및 MSVQ 방법에 의한 음성 인식 실험을 같은 조건하에서 같은 데이터로 수행하였다. 또한 제안된 DMS 모델을 이용한 음성 인식시에도 DMS/DP 방법에 의한 인식 및 DMS/VQ에 의한 인식률은 89.3%이다. 또한 DMS 모델을 이용한 DMS/DP에 의한 인식률은 95.8%이고, DMS/VQ에 의한 인식률은 96.8%이다. 그러므로, DMS 모델을 이용한 DMS/VQ 방법에 의한 인식이 일반적으로 많이 이용되고 잇는 DP 방법이나 HMM 방법 및 MSVQ 방법과 비교해 볼 때 인식률도 우수하며, 기억 용량 및 계산량도 감소되어, 본 연구에서 제안하는 DMS 모델의 유용성이 입증되었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0