메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제9권 제4호
발행연도
2008.8
수록면
964 - 969 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 화자 독립의 음성인식을 위한 연구로서, DMS(Dynamic Multi-Section) 모델에 의한 DMSVQ(Dynamic Multi-Section Vector Quantization) 코드북과 퍼지 개념을 이용한 HMM(Hidden Markov Model) 음성인식 방법을 제안한다. 제안된 인식 방법에서는 학습 데이터를 동적으로 몇 개의 구간(section)으로 분할한 후, 각 구간마다 DMSVQ 코드북(codebook)으로 부터 거리값이 작은 순으로 퍼지 법칙을 적용함으로써 적당한 확률값을 준 다중 관측열(multi-observation sequences)을 구한다. 그런 다음, 이 다중 관측열을 이용하여 HMM을 작성하고, 인식시에는 관측 확률값이 가장 높은 것을 인식된 것으로 선택한다. 제안된 방법에 의한 인식 실험은 기존의 다양한 인식 실험들과 비교를 위해 통일한 조건하에서 같은 데이터로 수행 하였다. 실험 결과로서, 본 연구에서 제안한 방법이 기존의 방법들보다 우수한 방법임을 입증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001124140