메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황철훈 (가천대학교) 신건윤 (가천대학교) 김동욱 (가천대학교) 한명묵 (가천대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제4호
발행연도
2020.8
수록면
537 - 544 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
악성코드 기술 발전으로 변이, 난독화 등의 탐지 회피 방법이 고도화되고 있다. 이에 악성코드 탐지 기술에 있어 알려지지 않은 악성코드 탐지 기술이 중요하며, 배포된 악성코드를 통해 저자를 식별하여 알려지지 않은 악성코드를 탐지하는 악성코드 저자 식별 방법이 연구되고 있다. 본 논문에서는 바이너리 기반 저자 식별 방법에 대해 중요 정보인 컴파일러 정보를 추출하고자 하였으며, 연구 간에 특징 선택, 확률 및 비확률 모델, 최적화가 분류 효율성에 미치는 민감성(Sensitive)을 확인하고자 하였다. 실험에서 정보 이득을 통한 특징 선택 방법과 비확률 모델인 서포트 벡터 머신이 높은 효율성을 보였다. 최적화 연구 간에 제안하는 프레임워크를 통한 특징 선택 및 모델 최적화를 통해 높은 분류 정확도를 얻었으며, 최대 48%의 특징 감소 및 51배가량의 빠른 실행 속도라는 결과를 보였다. 본 연구를 통해 특징 선택 및 모델 최적화 방법이 분류 효율성에 미치는 민감성에 대해 확인할 수 있었다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 유전 알고리즘을 이용한 제안 프레임워크
IV. 실험 및 결과
V. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001142321