메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이준성 (위스콘신대 건설관리학과)
저널정보
한국건설관리학회 한국건설관리학회논문집 한국건설관리학회논문집 제4권 제4호
발행연도
2003.1
수록면
114 - 122 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Dynamic and fragmented characteristics are two of the most significant factors that distinguish the construction industry from other industries. Previous forecasting techniques have failed to solve the problems derived from the above characteristics, and do not provide considerable support This paper deals with providing a more precise forecasting by applying Case-based Reasoning (CBR). The newly developed model in this study enables project managers to forecast monthly expenditures with less time and effort by retrieving and referring only projects of a similar nature, while filtering out irrelevant cases included in database. For the purpose of accurate forecasting, the choice of the numbers of referring projects was investigated. It is concluded that selecting similar projects at $5{\~}6{\%}$ out of the whole database will produce a more precise forecasting. The new forecasting model, which suggests the predicted values based on previous projects, is more than just a forecasting methodology; it provides a bridge that enables current data collection techniques to be used within the context of the accumulated information. This will eventually help all the participants in the construction industry to build up the knowledge derived from invaluable experience.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0