메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
동향자료
저자정보
저널정보
대외경제정책연구원 [KIEP] World Economy Brief World Economy Brief 제20권 제23호
발행연도
2020.8
수록면
1 - 9 (0page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aims to develop systematic labor forecast methods, thereby contributing to increasing the efficiency of TVET ODA. This study suggests a new labor demand forecast methodology that combines quantitative and qualitative analyses and applies it to Vietnam, estimating labor demand by occupations in the country’s wireless communication equipment industry. This methodology starts with a statistical projection of Vietnam’s future labor market and industry. Subsequently, this study uses an enterprise survey and stakeholder interviews to complement missing information, as Vietnam's statistical system, like that of many other emerging economies, lacks some detailed data. Currently, the “element occupations” group takes the largest portion in the labor demand by industry and occupation. According to our results, however, the “plant and machine operators and assemblers” group is expected to gradually increase, thus becoming the largest occupation group in the wireless communication equipment industry in the near future. Given the various circumstances surrounding the labor market in developing countries, other alternatives in addition to our hybrid method of combining quantitative and qualitative analysis can also produce well-founded labor force projections. This study suggests analytical methodologies using global value chain (GVC) and big data as innovative alternatives, which can complement the shortcomings of traditional evaluation methods. ODA implementing agencies would benefit from paying attention to the labor forecasting methods presented in this research, and devising policies supporting these methods in order to properly apply them in reality.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0