메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
방준아 (성균관대학교 통계학과) 손광민 (성균관대학교 통계학과) 이소정 (CJ올리브네트웍스 DT융합연구소) 이현근 (CJ올리브네트웍스 빅데이터센터) 조수빈 (성균관대학교 통계학과)
저널정보
한국빅데이터학회 한국빅데이터학회지 한국빅데이터학회지 제3권 제2호
발행연도
2018.1
수록면
35 - 49 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
대한민국에서 치킨집은 전 세계 맥도날드 매장 수보다 많을 정도로 자영업의 큰 비중을 차지하는 창업 업종이다. 치킨집은 꾸준히 생겨나고 있지만, 소상공인의 창업 후 폐업률은 3년 62%, 5년 71%에 육박하는 것으로 나타났다. 특히, 숙박 및 음식점의 경우 70%가 3년을, 82%가 5년을 버티지 못하는 것으로 집계되었다. 이에 본 연구는 '서울 치킨집 폐업 예측 모형'을 개발하여, 예비창업자가 개업 후보지를 선정하는 의사결정 과정에 도움을 주고자 하였다. 먼저 행정자치부 지방행정 인허가 데이터의 업소별 개 폐업 신고 일자를 중심으로 다양한 변수를 수집하였다. 이후 다양한 분류 알고리즘을 적용하고, 예측 모형의 성능을 비교하였다. 그 결과, 인공신경망(Neural Networks)이 가장 높은 정확도를 보였지만 특이도와 민감도가 불균형적이었다. 이에 비해 유연판별분석(FDA)은 인공신경망보다 정확도는 낮지만, 상대적으로 균형적인 예측 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0