메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이재경 (대진대학교 공학교육혁신센터)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제51권
발행연도
2018.1
수록면
1,079 - 1,089 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기존 기후변화 영향평가에서 발생하는 불확실성에 대한 연구들은 전체과정에서 총 불확실성과 그 전파에 대한 것보다 각 단계별 불확실성에 초점을 맞추어 연구가 진행되었다. 따라서 본 연구에서는 first-order Taylor series expansion에 기반하여 전망의 분산을 이용하는 Uncertainty Delta Method (UDM)를 제안하였으며, 이 방법은 각 단계별 불확실성 정량화와 증감정도, 단계별 불확실성 비율, 총 불확실성의 전파 과정 제시가 가능하다. 본 연구에서는 기후변화 영향평가 과정의 단계별 불확실성 정량화와 전파과정 분석을 위해 미래 2030년부터 2059년까지를 대상으로 2개 배출 시나리오, 3개 GCM, 2개 상세화기법, 2개 수문모형을 사용하였다. 결과를 분석하면, UDM을 이용한 총 불확실성은 5.45(배출시나리오: 4.45, 상세화기법: 0.45, 상세화기법: 0.27, 수문모형: 0.28)이며, 배출 시나리오의 불확실성(4.45)이 가장 크게 나타났다. 불확실성은 각 단계를 거칠수록 증가하는 것으로 나타났다. 이러한 결과는 어떠한 배출시나리오를 선정하느냐에 따라 미래 수자원전망이 매우 달라질 수 있음을 의미한다. 다음으로 Hawkins and Sutton (2009)가 제안한 Fractional Uncertainty Method (FUM)을 이용한 기후변화 영향평가 불확실성 분석에서 가장 불확실성이 큰 요인은 배출 시나리오(FUM 불확실성: 0.52)이며, 이 결과는 UDM 결과와 동일하게 나타났다. 따라서 이 연구에서 제안한 UDM은 기후변화 영향평가에서의 불확실성 이해와 적합한 분석 및 미래 기후변화 대비 보다 나은 수자원 전망이 가능하도록 기여할 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0