메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정지원 (서울시립대학교 컴퓨터과학과) 허희수 (서울시립대학교 컴퓨터과학과) 심혜진 (서울시립대학교 컴퓨터과학과) 유하진 (서울시립대학교 컴퓨터과학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제37권 제6호
발행연도
2018.1
수록면
483 - 488 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
원거리 발성은 화자 인증 시스템의 성능을 하락시키는 주요 요인으로 알려져 있다. 본 논문에서는 교사 학생 학습을 이용하여 원거리 발성에 의한 화자 인증 시스템의 성능 하락을 보상하는 기법을 제안한다. 교사 학생 학습은 미리 학습된 교사 심층신경망의 출력과 학생 신경망의 출력이 같아지도록 학생 신경망을 학습하는 기법이다. 여기서 교사 신경망에는 근거리 발성을, 학생 신경망에는 원거리 발성을 입력한 뒤, 두 신경망의 출력을 동일하게 만드는 과정을 통해 원거리 발성을 보상할 수 있을 것이라고 기대하였다. 하지만 원거리 발성을 보상하는 과정에서, 근거리 발성에 대한 인식률이 저하되는 현상을 실험적으로 발견하였다. 위와 같은 현상을 예방하기 위해 본 논문에서는 교사 심층신경망을 학생 심층신경망의 초깃값으로 사용하는 기법과 학생 심층신경망을 근거리 발성에 대해서도 학습하는 기법을 제안하였다. 모든 실험은 원 음성을 입력 받는 심층신경망을 활용해 수행하였다. 동일한 발성을 각각 4 채널로 근거리와 원거리에서 자체적으로 수집한 문장 종속 데이터셋을 활용하였다. 동일 오류율을 기준으로 근거리 / 원거리 발성에 대한 화자 인증 성능을 평가한 결과 교사 학생 학습을 사용하지 않을 경우 2.55 % / 2.8 %, 기존의 교사 학생 학습을 사용할 경우 9.75 % / 1.8 %, 제안한 기법들을 적용한 경우 2.5 % / 2.7 %의 오류율을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0