메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
도월희 (전남대학교 의류학과/전남대학교 생활과학연구소)
저널정보
한국의류학회 한국의류학회지 한국의류학회지 제34권 제7호
발행연도
2010.1
수록면
1,184 - 1,196 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Several applications of body scanning technology have been commercialized or are currently under development. The virtual fit from 3D scans is most advanced form of virtual try-on. This article is an analysis of the comparison of user preferences for domestic versus foreign 3D virtual try-on systems. For this study, domestic i-Fashion Mall (www.ifashionmall.co.kr) and a Canadian company, My Virtual Model (www.mvm.com) were selected as the most representative online retailers that offer a virtual try-on system. The respondents were comprised of 70 Korean female college students in the age group 20-29. A five point Likert scale was used to evaluate the degree of the preference of virtual avatar and try-on images. T-test, cross table, and a chi-square independence test were conducted for data analysis. The results are as follow. 1. The representation about current looks according to each virtual fit image indicates that MVM is more accurate than i-Fashion Mall. 2. About decision confidence, respondents have decision confidence in i-Fashion Mall in the case of the avatar image; however, respondents have confidence in MVM or the fit image. 3. There were no significant differences in among waist size groups in accuracy, trust of each avatar image, while there were significant differences among waist size groups in the accuracy and trust of each virtual fit image. 4. About ease of use, respondents answered that i-Fashion Mall is superior to MVM. 5. The respondents prioritized the ‘fitting report’ of i-Fashion Mall and ‘Weight loss’ of MVM over other functionalities.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0