메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김덕우 (국립환경과학원 물환경연구부 유역총량연구과) 유홍덕 (국립환경과학원 물환경연구부 유역총량연구과) 임도영 (국립환경과학원 물환경연구부 유역총량연구과) 정유진 (국립환경과학원 물환경연구부 유역총량연구과) 김용석 (국립환경과학원 물환경연구부 유역총량연구과)
저널정보
한국물환경학회 한국물환경학회지 한국물환경학회지 제33권 제6호
발행연도
2017.1
수록면
769 - 779 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Nutrient (i.e., nitrogen and phosphorus) budgets are required under a 'Livestock Excreta Survey'. A nutrient budget is one of the agri-environmental indicators that calculates the difference between the inputs and outputs of the amount of nutrients within a certain boundary and for a certain time period (e.g., 1 year). In this study, a nutrients budget model was developed to effectively determine the surplus of nutrients within a region in Korea. The C# program language was used in order to facilitate the deployment of a graphical user interface (GUI) and to enhance compatibility. Also, the model was developed on Windows OS, which is the commonly used operating system in Korea. The model was based on the OECD/Eurostat nutrient budget method, and it was modified to consider manure composting procedures as well. There are key features of the nutrient budget model, including directly use of the original data sets from various input and output sources, and a collectively exchange of the address in different formats. The model can quickly show the results of various spatial and temporal resolutions with the same data, as well as perform a sensitivity analysis with coefficients and easily compareresults using tables and graphs. Further, it would be necessary to study the extension of the scope of utilization, such as the application of various nutrient budget methods. It would also be helpful to investigate both pre and postprocessing information such as linking input data through online systems.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0