메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강영식 (세명대학교 보건안전공학과) 김태구 (인제대학교 대기환경정보연구센터)
저널정보
한국안전학회 한국안전학회지 한국안전학회지 제25권 제6호
발행연도
2010.1
수록면
47 - 52 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Many industrial accidents have occurred over the years in the manufacturing and construction industries in Korea. However, as the service industry has increased continuously, the share of the accident rate in the service industry was 39.07% in 2009, while the manufacturing industry share was 33.73%. The service industry share overtook the manufacturing industry share for the first time. Therefore, this research considers prevention of industrial accidents in the service industry as well as manufacturing and construction industries. This paper describes a procedure and a method to estimate efficient accident rate forecasting and estimated zero accident time in the service industry in order to prevent industrial accidents in the transportation, storage, and telecommunication divisions. This paper proposes a model using an analytical function for the sake of very efficient accident rate forecasting. Accordingly, this paper has develops a program for accident rate forecasting, zero accident time estimating, and calculation of achievement probability through MFC (Microsoft Foundation Class) software Visual Studio 2008 in the transportation, storage, and telecommunication divisions. In results of this paper, ARIMA (Auto Regressive Integrating Moving Average) is regarded as a very efficient forecasting model for the transportation, storage, and telecommunication division. In testing this model, value minimizing the Sum of Square Errors (SSE) was calculated as 0.2532. Finally the results of this paper are sure to help establish easy accident rate forecasting and strategy or method of zero accident time in the service industry for prevention of industrial accidents.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0