메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한인수 (GS칼텍스 기술연구소) 신현길 (GS칼텍스 기술연구소)
저널정보
한국화학공학회 화학공학 화학공학 제53권 제2호
발행연도
2015.1
수록면
236 - 242 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
고분자전해질 연료전지 스택의 성능 및 주요 운전 변수를 예측하기 위해 부분최소자승법과 인공신경망의 두 가지 데이터 기반 모델링 기법을 제시한다. 30 kW급 고분자전해질 연료전지 스택 실험으로부터 확보한 데이터를 사용하여 부분최소자승 및 인공신경망 모델들을 구성한 후 각 모델의 예측 성능 및 계산 시간을 비교하였다. 모델의 복잡성을 줄이기 위해 부분최소자승법에 기초한 VIP(Variable Importance on PLS Projections) 선정기준을 모델링 절차에 포함하여, 초기 입력변수의 집합으로부터 모델링에 필요한 입력변수들을 선정하였다. 모델링 결과, 인공신경망이 스택의 평균 셀전압과 캐소드(cathode) 출구 온도를 예측하는데 있어서, 부분최소자승법 보다 우수한 성능을 보였다. 그러나 부분최소자승법 또한 입력변수와 출력변수 간에 선형적 상관관계만을 모델링 할 수 있음에도 불구하고 비교적 만족할 만한 예측 성능을 나타냈다. 모델의 정확도와 계산속도의 요구조건에 따라 두 모델링 기법은 고분자전해질 연료전지의 설계 및 운전 분야의 성능 예측, 온라인 및 오프라인 최적화, 제어 및 이상 진단을 위해 적용될 수 있을 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0