메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이종서 (연세대학교 글로벌융합공학부 IT융합전공) 김성근 (아주대학교 경영정보학과) 강주영 (아주대학교 e-Business 학과)
저널정보
한국IT서비스학회 한국IT서비스학회지 한국IT서비스학회지 제16권 제1호
발행연도
2017.1
수록면
1 - 26 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Keeping good, talented people is one of the most significant factors in a company's success. HR analytics is an important area for applying big data analysis techniques to human resources. It provides organizational insight that enables effective management of employees, allowing management to reach their business goals quickly and efficiently. Job satisfaction and employee turnover analysis are the keys to HR analytics. Job review web services have been becoming popular. Because people exchange information about job satisfaction and turnover through these web services, useful information about HR Analytics is accumulated on the job review web sites. In this paper, we identified factors of employee retention by analyzing a Job Satisfaction/Retention group, and the factors of employee turnover by analyzing a Job Unsatisfaction/Turnover group. In order to do this, we first classified employees according to whether their self-reported job satisfaction or turnover was true. We collected and analyzed data from Jobplanet, a popular job review site. Through dominance analysis and LDA topic modeling, we found major factors, topics, and keywords of the classified groups by IT, service, and manufacturing domains. Our approach is a novel model to apply the analysis of reviews and text mining to the HR domain, and it will be practically helpful for setting new strategies that improve job satisfaction.

목차

등록된 정보가 없습니다.

참고문헌 (50)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0