메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
황기태 (한성대학교 컴퓨터공학과)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제10권 제3호
발행연도
2010.1
수록면
51 - 59 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Collaborative Filtering(CF) 기법에 기반을 둔 다양한 영화 추천 방법들이 제안 되어 왔다. CF는 영화를 본 사람들이 직접 영화에 대해 평가한 점수를 기반으로 같은 성향을 가진 이웃 그룹을 결정하고, 새로운 영화에 대해 그 영화를 이미 본 이웃의 점수를 기반으로 사용자의 새로운 영화에 대한 선호도 값을 예측하는 방법이다. 본 논문에서는 사용자에 따라 영화 장르에 대한 선호도 정보를 CF의 예측 값에 반영하는 새로운 방법을 제안한다. 이 방법은 CF를 기반으로 하는 모든 종류의 추천 방법에 결합하여 사용할 수 있다. 본 논문에서는 기존의 CF알고리즘에 장르기반 알고리즘을 결합한 CF-Genre의 성능과 기존의 CF 알고리즘의 성능을 측정 비교하였다. 성능 평가의 결과 CF-Genre가 기존 CF의 예측 성능을 3.3% 정도 개선하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0