메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
홍성문 (한양대학교 건축공학과) 김병춘 (대방건설) 권태환 (한양대학교 건축공학과) 김주형 (한양대학교 건축공학과) 김재준 (한양대학교 건축공학과)
저널정보
한국BIM학회 한국BIM학회논문집 한국BIM학회논문집 제6권 제2호
발행연도
2016.1
수록면
39 - 46 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
While institutional matters such as improvement on Basic Guidelines for Construction Safety are greatly concerned to reduce falling accidents at construction sites, there are short of studies on how to practically predict accident signs at construction sites and to preemptively prevent them. As one of existing accident prevention methods, it was attempted to build the early warning system based on standardized accident scenarios to control the situations. However, the investment cost was too high depending on the site situation, and it did not help construction workers directly since it was developed to mainly provide support operational work support to safety managers. In the long run, it would be possible to develop the augmented reality based accident prevention method from the worker perspective by extracting product information from BIM, visually rendering it along with site installation materials term and comparing it with the site situation. However, to make this method effective, the BIM model should be implemented first and the technology that can promptly process site situations should be introduced. Accordingly, it is necessary to identify risk signs through lightweight image processing to promptly respond only with currently available resources. In this study, it was intended to propose the system concept that identified potential risk factors of falling accidents by histogram equalization, which was known as the fastest image processing method presently, used visual words, which could enhance model classification by wording image records, to determine the risk factors and notified them to the work manager.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0