메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Taejun Lee (PaiChai University) Hyeonock Song (Dasom Information) SeungEui Yang (PaiChai University) Mingyu Kim (PaiChai University) Hoekyung Jung (PaiChai University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2022 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.13 No.1
발행연도
2022.1
수록면
291 - 294 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As this phenomenon has been pointed out as a social problem, such as fatal accidents or injuries caused by industrial accidents, which have recently led to civil accidents, the Act on Accidents Occurs in Industrial Sites is being implemented. According to the 2020 industrial accident statistical data published by the Ministry of Employment and Labor in 2020, the manufacturing industry accounted for 25% by industry. Also, workplaces with 5 to 49 employees accounted for 45.6% of the number of injured workers. Efforts to ensure the safety rights of workers and citizens and to prevent disasters in advance are required in various industries. In order to develop technology to prevent safety accidents, deep learning-based object detection technology is being used in a variety of ways. It takes a lot of effort to learn a model with an image of an industrial site. In this paper, it is thought that it can be used as an initial study to predict dangerous situations early by constructing learning data for industrial site worker safety accident management and learning various models.

목차

Abstract
I. INTRODUCTION
II. SYSTEM DESIGN
III. RESULTS
IV. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0