메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Han, Y. (Wind Engineering Research Center, College of Civil Engineering, Hunan University) Chen, Z.Q. (Wind Engineering Research Center, College of Civil Engineering, Hunan University) Hua, X.G. (Wind Engineering Research Center, College of Civil Engineering, Hunan University)
저널정보
테크노프레스 Wind & structures Wind & structures 제13권 제3호
발행연도
2010.1
수록면
293 - 307 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper describes a new method for the estimation of six complex aerodynamic admittance functions. The aerodynamic admittance functions relate buffeting forces to the incoming wind turbulent components, of which the estimation accuracy affects the prediction accuracy of the buffeting response of long-span bridges. There should be two aerodynamic admittance functions corresponding to the longitudinal and vertical turbulent components, respectively, for each gust buffeting force. Therefore, there are six aerodynamic admittance functions in all for the three buffeting forces. Sears function is a complex theoretical expression for the aerodynamic admittance function for a thin airfoil. Similarly, the aerodynamic admittance functions for a bridge deck should also be complex functions. This paper presents a separated frequency-by-frequency method for estimating the six complex aerodynamic admittance functions. A new experimental methodology using an active turbulence generator is developed to measure simultaneously all the six complex aerodynamic admittance functions. Wind tunnel tests of a thin plate model and a streamlined bridge section model are conducted in turbulent flow. The six complex aerodynamic admittance functions, determined by the developed methodology are compared with the Sears functions and Davenport's formula.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0