메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ai, Xiaoqiu (Shanghai Institute of Disaster Prevention and Relief, Tongji University) Cheng, Yingyao (Shanghai Institute of Disaster Prevention and Relief, Tongji University) Peng, Yongbo (Shanghai Institute of Disaster Prevention and Relief, Tongji University)
저널정보
테크노프레스 Wind & structures Wind & structures 제22권 제1호
발행연도
2016.1
수록면
89 - 106 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With an aim to assess the wind damage to urban trees in more realistic conditions, the nonlinear dynamics of structured trees subjected to strong winds with different levels is investigated in the present paper. For the logical treatment of dynamical behavior of trees, material nonlinearities of green wood associated with tree biomechanics and geometric nonlinearity of tree configuration are included. Applying simulated fluctuating wind velocity to the numerical model, the dynamical behavior of the structured tree is explored. A comparative study against the linear dynamics analysis usually involved in the previous researches is carried out. The failure wind velocity of urban trees is then defined, whereby the failure percentages of the tree components are exposed. Numerical investigations reveal that the nonlinear dynamics analysis of urban trees results in a more accurate solution of wind-induced response than the classical linear dynamics analysis, where the nonlinear effect of the tree behavior gives rise to be strengthened as increasing of the levels of wind velocity, i.e., the amplitude of 10-min mean wind velocity. The study of relationship between the failure percentage and the failure wind velocity provides a new perspective towards the vulnerability assessment of urban trees likely to fail due to wind actions, which is potential to link with the practical engineering.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0