메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Demir, Ersin (Department of Mechatronics Engineering, Pamukkale University) Callioglu, Hasan (Department of Mechatronics Engineering, Pamukkale University) Sayer, Metin (Department of Mechatronics Engineering, Pamukkale University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제62권 제5호
발행연도
2017.1
수록면
587 - 593 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of this analytical study is to calculate the elasto-plastic stresses of Functionally Graded (FG) hyperbolic disc subjected to uniform temperature. The material properties (elastic modulus, thermal expansion coefficient and yield strength) and the geometry (thickness) of the disc are assumed to vary radially with a power law function, but Poisson's ratio does not vary. FG disc material is assumed to be non-work hardening. Radial and tangential stresses are obtained for various thickness profile, temperature and material properties. The results indicate that thickness profile and volume fractions of constituent materials play very important role on the thermal stresses of the FG hyperbolic discs. It is seen that thermal stresses in a disc with variable thickness are lower than those with constant thickness at the same temperature. As a result of this, variations in the thickness profile increase the operation temperature. Moreover, thickness variation in the discs provides a significant weight reduction. A disc with lower rigidity at the inner surface according to the outer surface should be selected to obtain almost homogenous stress distribution and to increase resistance to temperature. So, discs, which have more rigid region at the outer surface, are more useful in terms of resistance to temperature.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0