메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Cho, Doosan (Department of electronic engineering, Sunchon National University)
저널정보
한국인터넷방송통신학회 International journal of internet, broadcasting and communication : IJIBC International journal of internet, broadcasting and communication : IJIBC 제12권 제1호
발행연도
2020.1
수록면
90 - 94 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Artificial intelligence (AI) is software that learns large amounts of data and provides the desired results for certain patterns. In other words, learning a large amount of data is very important, and the role of memory in terms of computing systems is important. Massive data means wider bandwidth, and the design of the memory system that can provide it becomes even more important. Providing wide bandwidth in AI systems is also related to power consumption. AlphaGo, for example, consumes 170 kW of power using 1202 CPUs and 176 GPUs. Since more than 50% of the consumption of memory is usually used by system chips, a lot of investment is being made in memory technology for AI chips. MRAM, PRAM, ReRAM and Hybrid RAM are mainly studied. This study presents various memory technologies that are being studied in artificial intelligence chip design. Especially, MRAM and PRAM are commerciallized for the next generation memory. They have two significant advantages that are ultra low power consumption and nearly zero leakage power. This paper describes a comparative analysis of the four representative new memory technologies.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0