메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Joo, Sung-Hyun (Department of Animal Science, Gyeongsang National University) Lee, Kyu-Won (Division of Applied Life Science [BK21+], Gyeongsang National University) Hwang, Young-Hwa (Institute of Agriculture & Life Science, Gyeongsang National University) Joo, Seon-Tea (Department of Animal Science, Gyeongsang National University)
저널정보
한국축산식품학회 한국축산식품학회지 한국축산식품학회지 제37권 제5호
발행연도
2017.1
수록면
716 - 725 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of this study was to determine the relationship between composition of muscle fiber types and meat quality traits of eight major muscles from Hanwoo steers. Longissimus lumborum (LL), psoas major (PM), semimembranosus (SM), semitendinosus (ST), gluteus medius (GM), triceps brachii (TB), rectus abdominis (RA) and superficialis flexor (SF) muscles were obtained from 9 Hanwoo steers and subjected to histochemical analysis. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of fiber types among these 8 major muscles. SF had the highest FNP of type I (55.9%), followed by PM (46.4%), TB (45.4%), RA (38.5%), LD (36.8%), GM (36.0%), SM (22.2%), and ST (18.8%). FAP of type IIB ranged from 9.9% in SF to 58.7% in ST. Meat quality traits, including fat content, myoglobin content, collagen content, CIE $L^*$ and $a^*$, drip and cooking loss, sarcomere length and Warner-Bratzler shear force, were all significantly (p<0.05) different among these muscles. Due to such diversities among these 8 muscles, lack of correlations were found between fiber type composition and meat quality traits. These results suggest that correlation for each individual muscle should be used to improve meat quality and profitability of retail beef cuts.

목차

등록된 정보가 없습니다.

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0