메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박희제 (경희대학교 정경대학 사회과학부)
저널정보
기술경영경제학회 기술혁신연구 기술혁신연구 제13권 제1호
발행연도
2005.1
수록면
169 - 191 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
By analyzing a national survey of public understanding of science and technology, this paper attempts to examine public perceptions of scientists and engineers in Korea. A special attention is given to the gap in the view of scientists and engineers across generation, gender, and class fields (or major fields). This paper shows that generation has the strongest effect on public perceptions of scientists and engineers among all the socio-demographic factors examined in this study. Those over 50 are more likely to have the conventional idealized images of scientists and the stereotypical negative images of scientists simultaneously, while the 20s are less likely to accept the idealized image of scientists. The survey result thus may suggest that the younger generation began to depart from a patriotic and moral description of scientists and engineers-for the younger generation, science and engineering is losing moral respect but becomes perceived as an ordinary occupation. Contrary to the popular belief, however, gender has little effect on public perceptions of scientists and engineers. This finding questions the assertion that female students possess more negative attitudes toward scientists and engineers than male students, and thus are reluctant to develop careers related to science and engineering. By uncovering that class fields (or major areas) have no effect on the image of scientists, this study also call into question the assertion in the science wars that the inadequate appreciation of science particularly among those who do not major in science and engineering is responsible for inadequate support for science and technology.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0