메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김수진 (서울대학교 의과대학 핵의학교실) 이재성 (서울대학교 의과대학 핵의학교실) 이원우 (서울대학교 의과대학 핵의학교실) 김유경 (서울대학교 의과대학 핵의학교실) 장성준 (서울대학교 의과대학 핵의학교실) 손규리 (서울대학교 의과대학 방사선과학교실) 김효철 (서울대학교 의과대학 방사선과학교실) 정진욱 (서울대학교 의과대학 방사선과학교실) 이동수 (서울대학교 의과대학 핵의학교실)
저널정보
대한핵의학회 핵의학분자영상 핵의학 분자영상 제41권 제4호
발행연도
2007.1
수록면
317 - 325 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
동적 PET 데이터는 구획모델과 Nonlinear Least Squares(NLS)방법을 사용하여 분석함으로서 각종 생화학적 물질의 생체 대사율 등을 정량화 할 수 있다. 하지만 NLS방법은 변수의 초기 값이 적절하지 않을 경우 지역적인 최소점에 빠지거나 계산시간이 길어 동역학 변수들을 각 화소마다 구해야 하는 파라메터 영상(parametric image) 구성에는 효과적이지 않다. Patlak 도표분석법(PGA)은 비선형 방정식을 선형화하여 값을 추정함으로서 간단하면서 적은 계산량으로 인해 파라메터 영상을 구성하는데 많이 사용되고 있으나 잡음성분과 선형구간 선정에 따라 값이 영향을 받는 단점이 있다. 따라서 이 연구에서는 3구획 비가역 모델에 적합한 다중선형분석법(MLAIR)을 고안하였으며 3구획 비가역 모델의 대표적 예인 $[^{18}F]Fluoride$ PET을 이용하여 미니돼지에서의 뼈 섭취률을 계산하여 PGA방법과 비교 분석해 보았다. 대상 및 방법: 3마리의 미니돼지를 대상으로 100MBq의 $[^{18}F]Fluoride$를 대퇴부 정맥에 주사하면서 ECAT EXAET 47 PET 스캐너를 이용하여 60분간 PET 영상을 얻었다. 케타민과 자일라진을 이용하여 30분 간격으로 마취하였으며 실험동물을 진공 쿠션을 이용하여 반드시 누운 자세로 위치하도록 고정 시켰다. 입력함수인 혈장 내 농도곡선은 대퇴동맥으로부터 스캔 시작과 함께 혈액 채취를 통해 얻었다. ROI분석을 위해 대퇴골두, 척추 뼈, 근육에 ROI를 그려 조직 내 시간-방사능 곡선을 얻었다. $k_4$가 0인 3구획 비가역 모델로부터 MLAIR와 PGA방법을 사용하여 관심영역에서의 뼈 섭취률 $K_i$와 파라메터 영상을 구성하였다. PGA방법은 선형구간의 시작점인 $t^*$선택에 따른 영향을 보기 위해 분석구간을 변화시켜가며 분석하였다. 결과: ROI 분석결과 추정된 $K_i$값은 NLS방법에 비하여 MLAIR방법과 PGA방법 모두에서 과대 추정되었으나 두 분석방법 끼리는 비슷한결과를 보였다. Patlak 기울기는 $t^*$선택에 따라 값이 변하였으며 Patlak 상수는 Fluoride 섭취가 높은 대퇴골두나 척추뼈에서 30분이 지나서야 일정한 값으로 나타났고 섭취가 낮은 근육에서는 10분만에 일정해졌다. 파라메터 영상에서는 제안한 MLAIR방법이 PGA방법에 비해 영상의 질을 향상시킴을 알 수 있었다. 또한 PGA방법을 이용하여 구성한 파라메터 영상은 $t^*$값이 커질수록 급격히 영상의 질이 저하됨을 볼 수 있다. 특히 Fluoride 섭취가 높은 영역에서 Patlak 상수가 일정해지는 시간인 $t^*$값이 30분일 때 파라메터 영상은 MLAIR와 크게 차이가 났다. 결론 결론적으로 제안한 MLAIR방법은 선형구간을 정할 필요 없이 모든 데이터를 사용하는 이점이 있으며 선형적인 방법을 통해 $K_i$값을 얻을 수 있어 계산시간을 단축 시켜 줄 뿐 아니라 잡음성분에 강해 파라메터 영상의 질을 크게 향상 시켜 줌으로 비가역 3구획모델에서의 PGA방법을 대체할 새로운 파라메터 영상구성방법으로 적합할 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0