메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chen, Yung-I (Bureau of High Speed Rail, Ministry of Transportation and Communications) Wu, Guan-Yuan (Department of Fire Science, Central Police University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제17권 제1호
발행연도
2004.1
수록면
113 - 140 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A mixed eight-node hexahedral element formulated via the Hu-Washizu principle as well as the field extrapolation technique is presented. The mixed element with only three translational degrees of freedom at each node can provide extremely accurate and reliable performance for popular benchmark problems such as spacial beams, plates, shells as well as general three-dimensional elasticity problems. Numerical calculations also show that when extremely skewed and coarse meshes and nearly incompressible materials are used, the proposed mixed element can still possess excellent behaviour. The mixed formulation starts with introduction of a parallelepiped domain associated with the given general eight-node hexahedral element. Then, the assumed strain field at the nodal level is constructed via the Hu-Washizu variational principle for that associated parallelepiped domain. Finally, the assumed strain field at the nodal level of the given hexahedral element is established by using the field extrapolation technique, and then by using the trilinear shape functions the assumed strain field of the whole element domain is obtained. All matrices involved in establishing the element stiffness matrix can be evaluated analytically and expressed explicitly; however, a 24 by 24 matrix has to be inverted to construct the displacement extrapolation matrix. The proposed hexahedral element satisfies the patch test as long as the element with a shape of parallelepiped.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0