메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Choi, Won (Department of Mathematics, University of Incheon)
저널정보
한국전산응용수학회 Journal of applied mathematics & computing Journal of applied mathematics & computing 제23권 제1호
발행연도
2007.1
수록면
455 - 460 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In allelic model $X=(x_1,\;x_2,\;{\cdots},\;x_d)$, $$M_f(t)=f(p(t))-{\int}_0^t\;Lf(p(t))ds$$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we try to apply diffusion processes for countable-allelic model in population genetic model and we can define a new diffusion operator $L^*$. Since the martingale problem for this operator $L^*$ is related to diffusion processes, we can define a integral which is combined with operator $L^*$ and a bilinar form $<{\cdot},{\cdot}>$. We can find properties for this integral using maximum principle.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0