메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
변재상 (신구대학 환경조경과) 최형석 (수원대학교 도시부동산 개발학과) 신지훈 ([주]그룹 한 경관생태디자인연구소) 조예지 (서울대학교 대학원) 김송이 (서울대학교 대학원) 임승빈 (서울대학교 조경학과)
저널정보
한국조경학회 한국조경학회지 한국조경학회지 제35권 제1호
발행연도
2007.1
수록면
59 - 68 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This article statistically analyzed contributive levels of district image based on an effect and a similarity index through the evaluation of citizens and suggested the efficient management system of a city image according to the results. For this study, Busan City was selected as a case city by the preceding literature and was investigated concerning district image and city image through a questionnaire. The new evaluation method for analysis of a city image was presented in this process. The results of this research are as follows: 1. Busan City has a substantial positive and culturally unique image, and each of its districts have other image characteristics. for example, the CBD district has a positive image, and the sea shore district has a busy and prosperous image, but the backward sea shore district has an image of stagnancy. 2. The image of Yeonje-gu has the largest effect on the image of Busan. Next in influence are Jung-gu, Saha-gu, Suyoung-gu, respectively. The effect index is closely connected with the variance of evaluative adjectives. 3. Busanjin-gu and Haeundae-gu have similar images to Busan City. Next in similarity are Nam-gu, Jung-gu, Youngdo-gu, Suyoung-gu, respectively. The similarity index is closely connected with the correlation of evaluative adjectives. Busan City and its districts can establish their image strategies with the above analyzed results. This study is meaningful in that a statistical evaluative method was proposed. With continued follow-up research, this study may serve as a systematic and logical model to improve the urban landscape and image.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0