메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민재 (고려대학교) 김보민 (고려대학교) 허준범 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제5호
발행연도
2020.10
수록면
871 - 879 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Perceptual Ad-Blocking은 인공지능 기반의 광고 이미지 분류 모델을 이용하여 온라인 광고를 탐지하는 새로운 광고 차단 기법이다. 이러한 Perceptual Ad-Blocking은 최근 이미지 분류 모델이 이미지를 틀리게 분류하게끔 이미지에 노이즈를 추가하는 적대적 예제(adversarial example)를 이용한 적대적 공격(adversarial attack)에 취약하다는 연구 결과가 제시된 바 있다. 본 논문에서는 다양한 적대적 예제를 통해 기존 Perceptual Ad-Blocking 기법의 취약점을 증명하고, MNIST, CIFAR-10 등의 데이터 셋에서 성공적인 방어를 수행한 Defense-GAN과 MagNet이 광고 이미지에도 효과적으로 작용함을 보인다. 이를 통해 Defense-GAN과 MagNet 기법을 이용해 적대적 공격에 견고한 새로운 광고 이미지 분류 모델을 제시한다. 기존 다양한 적대적 공격기법을 이용한 실험 결과에 따르면, 본 논문에서 제안하는 기법은 적대적 공격에 견고한 이미지 분류 기술을 통해 공격 이전의 이미지 분류 모델의 정확도와 성능을 확보할 수 있으며, 더 나아가 방어 기법의 세부사항을 아는 공격자의 화이트박스 공격(White-box attack)에도 일정 수준 방어가 가능함을 보였다.

목차

요약
ABSTRACT
I. 서론
II. 이론적 배경
III. 연구방법
IV. 실험결과
V. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001583639