메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박주찬 (한국기술교육대학교) 이선훈 (한국기술교육대학교) 정준욱 (한국기술교육대학교) 손성빈 (한국기술교육대학교) 오흥선 (한국기술교육대학교) 정유철 (금오공과대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제26권 제11호
발행연도
2020.11
수록면
891 - 899 (9page)
DOI
10.5302/J.ICROS.2020.20.0131

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
Object detection in aerial images is an important task because it is used in various applications such as land management, disaster monitoring, national security, and map production, However, owing to the characteristics of aerial images, such as high resolution, data imbalance between classes, lack of data, and densely appearing objects, it is difficult to improve the performance even with the recent deep learning-based object detection models. To overcome these challenges, this paper proposes an uncertainty-based max-margin learning method and a data augmentation method based on attribute transformation specialized for aerial images. The superiority of the proposed methods based on a deep learning-based object detection model is revealed by it winning the aerial image object detection contest 2020.

목차

Abstract
I. 서론
II. 관련연구
III. 제안하는 방법
IV. 실험
V. 결론
REFERENCES

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001571314