메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Loris Ventura (Politecnico di Torino) Stefano A. Malan (Politecnico di Torino)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
721 - 726 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The tightening of the diesel pollutant emission regulations has made the performances obtainable from steady-state map controls, commonly employed in Internal Combustion Engine management, unsatisfactory. To overcome these limitations a NonLinear Quadratic Regulator (NLQR) system for the High Pressure Exhaust Gas Recirculation (HP-EGR) loop of a turbocharged diesel engine has been developed to control the intake O₂ concentration and the Intake MAnifold Pressure (IMAP). This model-based control approach exploits the prediction of two dynamic Recurrent Neural Networks (RNN) to compute the command actions for the HP-EGR valve and VGT (Variable Geometry Turbocharger) rack position. Engine speed, engine load, HP-EGR and VGT valves positions together with the intake O₂ concentration and IMAP feedbacks are the inputs used by the RNN to compute the predictions. In order to select the next HP-EGR and VGT control actions the effect of different command combinations, retrieved from a discretized action space, are evaluated through a quadratic objective function to be minimized. Two different transient profiles have been used to test the designed control system against the steady-state map approach. The developed control system has shown a satisfactory performance improvement over the map control. Therefore it is suitable for the subsequent assessment on the real engine.

목차

Abstract
1. INTRODUCTION
2. PROBLEM DEFINITION
3. CONTROL DESIGN
4. RESULTS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569670