메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송민수 (건국대학교) 김원준 (건국대학교) 장래영 (한국과학기술정보연구원) 이용 (한국과학기술정보연구원) 박민우 (한국과학기술정보연구원) 이상환 (한국과학기술정보연구원) 최명석 (한국과학기술정보연구원)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제25권 제6호
발행연도
2020.11
수록면
944 - 953 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
객체 검출 알고리즘은 자율주행 시스템 구현을 위한 핵심 요소이다. 최근 심층 합성곱 신경망 (Deep Convolutional Neural Network) 기반의 영상 인식 기술이 발전함에 따라 심층 학습을 이용한 객체 검출 관련 연구들이 활발히 진행되고 있다. 본 논문에서는 객체 검출에 가장 널리 사용되고 있는 Mask R-CNN의 경량화 모델을 제안하여 도로 내 다양한 객체들의 위치와 형태를 효율적으로 예측하는 방법을 제안한다. 또한, 주의 모듈(Attention Module)을 Mask R-CNN 내 각각 다른 역할을 수행하는 신경망 계층에 적용함으로써 특징 지도를 적응적으로 재교정(Re-calibration)하여 검출 성능을 향상시킨다. 실제 주행 영상에 대한 다양한 실험 결과를 통해 제안하는 방법이 기존 방법 대비 크게 감소된 신경망 매개변수만을 이용하여 고성능 검출 성능을 유지함을 보인다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 방법
Ⅲ. 실험 결과 및 분석
Ⅳ. 결론
참고문헌 (References)

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0