메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최재영 (성균관대학교) 양희윤 (성균관대학교) 오하영 (성균관대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제2호
발행연도
2021.2
수록면
171 - 177 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 머신러닝의 발전에 따라 일상생활과 산업에서 기술을 적용하는 사례들이 많아지고 있다. 금융 데이터와 머신러닝 기법을 활용한 연구 또한 활발하게 이루어지고 있다. 본 논문은 이러한 동향에 따라 상점 매출 데이터에 머신러닝 기법을 접목해 매출 예측 모델을 구축, 핀테크 산업에서의 활용 방안을 제시한다. 다양한 결측치 처리 기법을 적용하고 그래디언트 부스팅 기반의 머신러닝 기법인 XGBoost, LightGBM, CatBoost를 사용하여 각 모델의 상점 매출 예측 성능을 비교한다. 연구 결과, 단일대체법 중 중앙값 대체법을 사용한 데이터셋에 XGBoost를 활용해 예측을 진행한 모델의 성능이 가장 우수했다. 연구를 통해 얻은 모델을 이용하여 상점의 매출 예측을 진행함으로서 핀테크 기업의 고객 상점들은 대출금을 상환하기 전 금융 보조를 받는 근거로, 핀테크 기업은 상환 가능성이 높은 우수 상점에 금융 상품을 제공하는 등 기업과 고객 모두에게 긍정적인 방향으로 활용할 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 연구 방법
Ⅲ. 실험 및 결과
Ⅳ. 결론
REFERENCES

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001553091