메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
전민종 (한양대학교) 최혜진 (한양대학교) 박지웅 (한양대학교) 최하영 (한양대학교) 이동희 (한양대학교) 이욱 (한양대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제22권 제3호
발행연도
2021.3
수록면
58 - 64 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자동차 등록대수와 비례하여 증가하는 교통 혼잡은 도시의 사회경제 발전의 저해 요소로 작용하고 있다. 본 논문은 VDS(Vehicle Detection System)을 통한 데이터를 입력 변수로 사용한다. 본 연구의 목적은 교통 흐름을 단순히 2단계(원할, 정체)가 아닌 5단계(원할, 다소 지체, 지체, 다소 정체, 정체)로 더 정교하게 예측하고, 이 예측에서 가장 정확도가 높은 모델인 Catboost 모델과 다른 모델들을 비교하는 것이다. 이를 위해 본 논문에서는 머신러닝 알고리즘인 Catboost 모델을 통해 5가지 단계를 예측하고 정확도를 다른 머신러닝 알고리즘들과 비교, 분석한다. 또한, 하이퍼 파라미터(Hyper Parameter) 튜닝 및 원-핫 인코딩(One-Hot Encoding) 전처리를 거치지 않은 Catboost 모델과 랜덤선택(RandomizedSearchcv)을 통해 튜닝 및 데이터 전처리를 거친 모델을 비교, 분석한다. 분석 결과 하이퍼 파라미터 튜닝을 하지 않은 초기 Catboost 모델이 정확도 93%를 보이며 가장 높은 정확도를 기록하였다. 따라서 본 연구는 두가지 의의를 가진다. 첫번째로, 초기 세팅된 파라미터들이 적용된 Catboost 모델이 다수의 범주형 변수를 포함하는 교통흐름 예측에서 다른 머신러닝, 딥러닝 모델들보다 성능이 높다는 결론을 도출했다는 점에서 의의가 있다. 두번째로, 기존 2단계로 예측하던 교통 흐름을 5단계로 예측함으로써 더욱 정교한 교통 흐름 예측 모델을 제안한다는 점에서 의의를 가진다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. Catboost를 활용한 교통 흐름 예측
4. 실험결과
5. 결론 및 향후 과제
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0